4,052 research outputs found

    Chemical markers of human tendon health identified using Raman spectroscopy: potential for in vivo assessment

    Get PDF
    The purpose of this study is to determine whether age-related changes to tendon matrix molecules can be detected using Raman spectroscopy. Raman spectra were collected from human Achilles (n = 8) and tibialis anterior (n = 8) tendon tissue excised from young (17 ± 3 years) and old (72 ± 7 years) age groups. Normalised Raman spectra underwent principal component analysis (PCA), to objectively identify differences between age groups and tendon types. Certain Raman band intensities were correlated with levels of advanced glycation end-product (AGE) collagen crosslinks, quantified using conventional destructive biochemistry techniques. Achilles and tibialis anterior tendons in the old age group demonstrated significantly higher overall Raman intensities and fluorescence levels compared to young tendons. PCA was able to distinguish young and old age groups and different tendon types. Raman intensities differed significantly for several bands, including those previously associated with AGE crosslinks, where a significant positive correlation with biochemical measures was demonstrated. Differences in Raman spectra between old and young tendon tissue and correlation with AGE crosslinks provides the basis for quantifying age-related chemical modifications to tendon matrix molecules in intact tissue. Our results suggest that Raman spectroscopy may provide a powerful tool to assess tendon health and vitality in the future

    Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    Get PDF
    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment

    Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification

    Get PDF
    Understanding genome organization and gene regulation requires insight into RNA transcription, processing and modification. We adapted nanopore direct RNA sequencing to examine RNA from a wild-type accession of the model plant Arabidopsis thaliana and a mutant defective in mRNA methylation (m6A). Here we show that m6A can be mapped in full-length mRNAs transcriptome-wide and reveal the combinatorial diversity of cap-associated transcription start sites, splicing events, poly(A) site choice and poly(A) tail length. Loss of m6A from 3’ untranslated regions is associated with decreased relative transcript abundance and defective RNA 30 end formation. A functional consequence of disrupted m6A is a lengthening of the circadian period. We conclude that nanopore direct RNA sequencing can reveal the complexity of mRNA processing and modification in full-length single molecule reads. These findings can refine Arabidopsis genome annotation. Further, applying this approach to less well-studied species could transform our understanding of what their genomes encode

    Single- and multi-photon excited fluorescence from serotonin complexed with B-cyclodextrin

    Get PDF
    The fluorescence of serotonin on binding with B-cyclodextrin has been studied using both steady-state and time-resolved methods. Steady state fluorescence intensity of serotonin at 340 nm showed ~ 30% increase in intensity on binding with Ka ~ 60 dm3 mol 1 and the fluorescence lifetimes showed a corresponding increase. In contrast, the characteristic green fluorescence (‘hyperluminescence’) of serotonin observed upon multiphoton near-infrared excitation with sub-picosecond pulses was resolved into two lifetime components assigned to free and bound serotonin. The results are of interest in relation to selective imaging and detection of serotonin using the unusual hyperluminescence emission and in respect to recent determinations of serotonin by capillary electrophoresis in the presence of cyclodextrin. The results also suggest that hyperluminescence occurs from multiphoton excitation of a single isolated serotonin molecule

    Cryogenic Liquid Level Sensor Apparatus and Method

    Get PDF
    The invention proposed herein is a system and method for measuring the liquid level in a container that employs an optic fiber sensor which is heated using a simple power source and a wire and making an anemometry measurement. The heater wire is cycled between two levels of heat and the liquid level is obtained by measuring the heat transfer characteristics of the surrounding environment

    Is the collagen primed for mineralization in specific regions of the Turkey tendon?:an investigation of the protein-mineral interface using Raman spectroscopy

    Get PDF
    The tendons in the turkey leg have specific well-defined areas which become mineralized as the animal ages and they are a thoroughly characterized model system for studying the mineralization process of bone. In this study, nondestructive Raman spectroscopic analysis was used to explore the hypothesis that regions of the turkey tendon that are associated with mineralization exhibit distinct and observable chemical modifications of the collagen prior to the onset of mineralization. The Raman spectroscopy features associated with mineralization were identified by probing (on the micrometer scale) the transition zone between mineralized and nonmineralized regions of turkey leg tendons. These features were then measured in whole tendons and identified in regions of tendon which are destined to become rapidly mineralized around 14 weeks of age. The data show there is a site-specific difference in collagen prior to the deposition of mineral, specifically the amide III band at 1270 cm(-1) increases as the collagen becomes more ordered (increased amide III:amide I ratio) in regions that become mineralized compared to collagen destined to remain nonmineralized. If this mechanism were present in materials of different mineral fraction (and thus material properties), it could provide a target for controlling mineralization in metabolic bone disease

    Monitoring Base Specific Dynamics during Melting of DNA-Ligand Complexes using Temperature-Jump Time-Resolved Infrared Spectroscopy

    Get PDF
    Ultrafast time-resolved infrared spectroscopy employing nanosecond temperature-jump initiation has been used to study the melting of double-stranded (ds)DNA oligomers in the presence and absence of minor groove-binding ligand Hoechst 33258. Ligand binding to ds(5′-GCAAATTTCC-3′), which binds Hoechst 33258 in the central A-tract region with nanomolar affinity, causes a dramatic increase in the timescales for strand melting from 30 to 250 μs. Ligand binding also suppresses premelting disruption of the dsDNA structure, which takes place on 100 ns timescales and includes end-fraying. In contrast, ligand binding to the ds(5′-GCATATATCC-3′) sequence, which exhibits an order of magnitude lower affinity for Hoechst 33258 than the A-tract motif, leads to an increase by only a factor of 5 in melting timescales and reduced suppression of premelting sequence perturbation and end-fraying. These results demonstrate a dynamic impact of the minor groove ligand on the dsDNA structure that correlates with binding strength and thermodynamic stabilization of the duplex. Moreover, the ability of the ligand to influence base pairs distant from the binding site has potential implications for allosteric communication mechanisms in dsDNA

    Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test

    Get PDF
    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by utilizing unique sensing capabilities of fiber optic sensors

    Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy

    Get PDF
    X-ray-based diagnostic techniques, which are by far the most widely used for diagnosing bone disorders and diseases, are largely blind to the protein component of bone. Bone proteins are important because they determine certain mechanical properties of bone and changes in the proteins have been associated with a number of bone diseases. Spatially Offset Raman Spectroscopy (SORS) is a chemically specific analytical technique that can be used to retrieve information noninvasively from both the mineral and protein phases of the bone material in vivo. Here we demonstrate that SORS can be used to detect a known compositional abnormality in the bones of a patient suffering from the genetic bone disorder, osteogenesis imperfecta, a condition which affects collagen. The confirmation of the principle that bone diseases in living patients can be detected noninvasively using SORS points the way to larger studies that focus on osteoporosis and other chronic debilitating bone diseases with large socioeconomic burdens
    • …
    corecore